Vereinbarung der FK Mathematik des Gymnasiums Waldstraße zur Verwendung des GTR im schriftlichen Abitur Stand 11/2017

Zur Information der Schülerinnen und Schüler:

In der Abiturklausur sind die Lösungswege – wie in den übrigen Klausuren – nachvollziehbar und entsprechend den Operatoren zu dokumentieren.¹

- 1) **Angeben=Nennen** bedeutet: Ergebnis (Lösungsweg nicht gefordert)
- 2) **Ermitteln/ Bestimmen** bedeutet: Ansatz + <u>Lösungs</u>weg + Ergebnis (zulässige "Abkürzungen" mit dem GTR siehe unten, Mindestangaben erforderlich)
- 3) **Berechnen** bedeutet: Ansatz + <u>Rechen</u>weg + Ergebnis (nur das RUN-Menü des GTR darf verwendet werden)

Für den Operator **Ermitteln/ Bestimmen** werden folgende durch den GTR unterstützte Verfahren ("Abkürzungen") als vollständiger Lösungsschritt gewertet, wenn die angeführten Mindestangaben gemacht werden:

ANALYSIS

Funktionswerte bestimmen

Ein Funktionswert an einer bestimmten Stelle kann mit dem GRAPH- oder TABLE-Menü bestimmt werden, muss aber sachrichtig notiert werden:

Beispiel:

$$f(x) = x^3$$
$$f(5) = 125$$

· Tangentensteigung bestimmen

Eine Tangentensteigung an einer bestimmten Stelle kann im GRAPH-Menü bestimmt werden, die Ableitungsfunktion muss aber zuvor angegeben werden:

Beispiel:

$$f(x) = x^3$$

$$f'(x) = 3x^2$$

$$f'(5) = 75$$

Nullstellen und Extrema bestimmen

Bei den Berechnung dürfen die Abkürzungen zum Lösen der Gleichungen (s.u.) verwendet werden (Achtung: Ablesen im GRAPH-Menü reicht nur bei "Angeben"!)

quadratische/kubische Gleichungen lösen

Eine quadratische/kubische Gleichung kann im EQUA-Menü oder im GRAPH-Menü gelöst werden, die einzugebenden Parameter müssen im EQUA-Menü vollständig aufgelistet werden.

Beispiel:

$$2x^{2} + 3x - 5 = 0$$

 $a = 2, b = 3, c = -5$ $\Longrightarrow x_{1} = 1$
 $x_{2} = -2, x_{3} = 0$

Gleichungen lösen, die analytisch nicht gelöst werden können

Lösungen dürfen im EQUA-Menü bestimmt oder im GRAPH-Menü als Nullstellen abgelesen werden.

Beispiel:

$$e^{x} = x^{2}$$
 $e^{x} - x^{2} = 0$
 $\xrightarrow{Graph\ GTR} x \approx -0.703$

¹ Die Angabe einer Folge von GTR-Befehlen erfüllt **nicht** die Anforderung, ein Vorgehen ("bestimmen") oder eine Berechnung ("berechnen") darzustellen.

[Fortsetzung "GTR-Abkürzungen" beim Operator Bestimmen/ Ermitteln]

bestimmte Integrale bestimmen

Ein bestimmtes Integral kann mit dem GTR berechnet werden, die Stammfunktion muss aber zuvor angegeben werden.

$$\int_{1}^{4} x^{3} - 2 \ dx = \left[\frac{1}{4} x^{4} - 2x \right]_{1}^{4} = F(4) - F(1) = \frac{231}{4}$$
 (GTR)

Grenzwerte bestimmen

Grenzwerte von Funktionen dürfen im GRAPH-Menü abgelesen werden, müssen aber sachrichtig notiert werden.

$$\lim_{x\to\infty} -2x^3 = -\infty$$

LINEARE ALGEBRA

Lösen von linearen Gleichungssystemen (LGS)

Ein eindeutig bestimmtes nxn – LGS kann im EQUA-Menü gelöst werden, es muss aber vorher in matrixähnlicher Schreibweise, entsprechend der Eingabe in den GTR. notiert werden.

$$\begin{vmatrix} 2x + 3y = 8 \\ 4x - 2y = 0 \end{vmatrix}$$
 ode

$$\begin{vmatrix} 2x + 3y = 8 \\ 4x - 2y = 0 \end{vmatrix} \quad \text{oder} \qquad \begin{pmatrix} 2 & 3 & 8 \\ 4 & -2 & 0 \end{pmatrix} \qquad \xrightarrow{\overrightarrow{gTR}} \begin{cases} x = 1 \\ y = 2 \end{cases}$$

Vektor- und Matrizenrechnung

alle GTR-Funktionen zur Vektor- und Matrizenrechnung können ohne Einschränkung verwendet werden.

STOCHASTIK

Bei allen Berechnungen zur Binomialverteilung ist die Zufallsvariable zu definieren und sind die Parameter der Binomialverteilung anzugeben.

Binomialverteilte Wahrscheinlichkeiten bestimmen

Die Wahrscheinlichkeiten P(X = k) und $P(X \le k)$ dürfen z.B. im TABLE-Menü mit den Befehlen BinomialPD(k,n,p) bzw. BinomialCD(k,n,p) berechnet werden.

X= Anzahl der 6en,
$$X \sim B(10, \frac{1}{6})$$

 $P(X \ge 3) = 1 - P(X \le 2) = 1 - 0,7752$ (GTR)
= 0,2248

Stichprobenumfang n/ kritischen Wert k bestimmen

Beides darf z.B. im TABLE-Menü abgelesen werden, dabei sind auch die relevanten benachbarten Einträge zu notieren:

X= Anzahl der 6en,
$$X \sim B(n, \frac{1}{6})$$

 $n \text{ gesucht, so dass } P(X \ge 3) \ge 0.95$
 $1 - P(X \le 2) = 0.946 < 0.95 \text{ für } n = 35$
 $1 - P(X \le 2) = 0.952 \ge 0.95 \text{ für } n = 36$
 $\Rightarrow n = 36$

^{***}Diese Vereinbarung ist kein Hilfsmittel für die Abiturklausur.***